Molds and Mycotoxins: An Animal Feed Ingredient Outlook

John Boney, Ph.D.
Penn State Extension Poultry

Mid-Atlantic Nutrition Conference
April 10, 2019
Outline

• History of Mycotoxicosis

• Mycotoxins
 ➢ Optimal Conditions

• Implications

• FDA Limits

• Mycotoxin Report
History of Mycotoxicology

• St. Anthony’s fire
 • Gangrenous ergotism caused by *Claviceps purpurea*
 • Consumption of grains contaminated with ergots
 • Periodic outbreaks in central Europe
 • Became an epidemic in the Middle Ages
 • mid-16th century

• Symptoms
 • Hallucinations \rightarrow psychosis
 • Swollen limbs with burning sensation
 • Uncontrollable itching feeling
 • Diarrhea and vomiting
 • Necrosis
 • Led to loss of appendages
Modern Mycotoxicology

• Began with the discovery of aflatoxins in the early 1960’s
• Thousands of toxic metabolites of fungi
• Concern for both human and animal diseases
• Food safety concerns
• Other Impacts:
 • Grain trade
 • Marketing of food
 • Marketing of feed
Mycotoxins

• Term was derived from:
 • “mykes” → Fungi
 • “toxicon” → Poison

• Can be produced by over 200 species of molds

• Fungal growth → mycotoxin formation
 • Dependent on:
 • Season
 • Location of grain cultivation
 • Drought
 • Time of harvest

• Contaminated grains typically have more than a single mycotoxin

Murugesan et al., 2015
The effects of plant population and harvest date

Grain Yield

% Stalk Rot

Precipitation in 2018

Precipitation difference from normal in eastern United States in 2018. (Capital Weather Gang) – Jan. 2nd, 2019
Pennsylvania
Sept 4, 2018 – Dec 2, 2018

Mean Areal Precipitation (top)
Departure From Average (Bottom)

National Weather Service: www.weather.gov
Wetness Percentile: Relative to 1948-2012
What concerns does this record precipitation present to animal agriculture?

• Soil Quality
 • Excess soil moisture

• Crop Production
 • Planting/Harvesting Schedules
 • Crop Yield

• Ingredient and Feed Quality
 • Mycotoxins
 • Molds
Mold

• Contributors to mold proliferation:
 • Storage conditions
 • Faulty grain bins
 • Grain piles
 • Long-term storage
 • Wet/rainy season
 • Summer conditions
 • High heat
 • High relative humidity
Grain Storage

- Insufficient storage capacity results in the need to store grains in piles
 - Associated risks:
 - Biosecurity
 - Weather related factors like increased moisture and mold proliferation
Mold Proliferation: Optimal Conditions

- Most livestock feeds contain mold spores
 - $< 10^4$ cfu/g
- Molds become visible at $\sim 10^6$ cfu/g
- What does mold need to proliferate?
 - Moisture
 - Relative humidity +70%
 - Oxygen
 - 1-2%
 - Time
 - Correct temperature
 - Variable according to species

DiCostanzo and Murphy, 2012, University of Minnesota

Photo taken by Jeff Graybill, PSU Extension Agronomist, in Lancaster, PA in November 2018
Mold Inhibitors

- Substances designed to suppress the generation of mold and prevent the proliferation of toxins
 - Granulated
 - Traditional application
 - Liquid
 - Application technology development allows for addition at the mixer

- Improve animal performance
- Decrease production costs
 - Dependent on milling technique
 - Moisture-mold inhibitor combo

Hott et al., 2008
Mycotoxin-Producing Fungi

- Mycotoxins of concern
 - Produced by 3 genera of fungi
 - *Aspergillus*
 - *Penicillium*
 - *Fusarium*

- Occurrence depends on favorable conditions being met
 - May be limited to certain environments and specific crops

CAST, 2003
Economic Impacts of Mycotoxin Contamination

• Why is mycotoxin contamination expensive?
 • Reduction in animal performance
 • Reduction in animal health
 • Preventative practices
 • Mitigation practices
 • Reduced value of contaminated feed
 • Contamination of foods and products of animal origin

Grenier and Applegate; 2013

• In 2003, estimated mean economic losses
 • $932 million annually
 • From aflatoxins, fumonisins, and deoxynivalenol

CAST, 2003
Mycotoxicosis

- Acute cases from ingestion of high levels of mycotoxins
 - Mortality
 - Declined productivity
 - Obvious clinical signs
 - Post-mortem lesions

- Chronic cases from ingestion of low level of mycotoxins
 - Measurable decline in performance
 - Subcutaneous hemorrhage
 - Immunosuppression

- Less than ideal performance without the presence of:
 - Infection
 - Environmental factors
 - Nutritional deficiency

Not typical

Most common

Suggests potential mycotoxicosis

Murugesan et al., 2015
Diagnosis of Mycotoxicosis

• Diagnosis in animals is difficult

• Observed effects may not be unique to a given mycotoxin

• Even more difficult when more than one mycotoxin is present
 • Additive or synergistic effects in animals
Diagnosis of Mycotoxicosis

- Diagnosis is based on data from controlled experiments
 - How well does this correlate to reality?

- Natural intoxicants and disease condition may be affected by:
 - Environment
 - Nutrition
 - Behavior
 - Husbandry
Ideal Diagnosis

• Collect samples from:
 • Living animals
 • Animals post-mortem

• Thorough chemical examination of the feed

CAST, 2003
Sampling for mycotoxin analysis

• Sampling technique
 • Sample is useless if taken incorrectly

• Obtaining adequate sample is crucial
 • Uneven distribution
 • Low concentrations of mycotoxins in grains
 • Greatest opportunity for variability in the testing process

CAST, 2003; Feed Manufacturing Technology, 2005
Sampling Procedures

Ingredients

- **Bulk Bags (totes)**
 - Lot of 1-4 bags
 - 5 probe samples
 - Lot of 5-9 bags
 - 1 probe sample per bag
 - 10+ bags
 - 1 probe sample per 10 bags

- **Bulk**
 - May consider automated sampling
 - Based on volume
 - 5 probe samples over the entire load
 - Only 1 probe from centerline
 - Not less than 4 oz per 1,000 lbs of ingredients
Sampling Procedures

Finished Feeds

- **Bagged Feed**
 - 1-4 bags
 - 5 core samples
 - 5-10 bags
 - 1 core sample from each bag
 - 11+ bags
 - 1 core sample from each of 10 bags

- **Bulk Feed**
 - 10 core samples from different regions of:
 - Bin
 - Truck
 - Railcar
 - May obtain sample while loading or unloading
 - Collected through entire stream of product

Feed Manufacturing Technology, 2005
Analytical Testing for Mycotoxins

• Quantification procedures
 • Liquid chromatography coupled to mass spectrometry
 • LC-MS
 • Detect hundreds of mycotoxins simultaneously
 • HPLC
 • ELISA
 • Used in the past
 • Thin-layer chromatography
 • GC
 • Fluorometry

• Quantification method validation
 • Known quantities of certified reference materials

CAST, 2003; Murugesan et al., 2015
Nutritional Implications

• GI tract functionality
 • Enterocyte integrity
 • High protein turnover
 • Protein synthesis inhibition
 • Endogenous nutrient loss

• Nutrient Digestion and Absorption
 • Reduced pancreatic enzyme activity
 • Reduced nutrient transporters
 • GLUT2
 • GLUT5
 • SGLT1
 • Palmitate
Nutritional Implications

• Intestinal barrier function
 • Inhibited active transport of glucose and amino acids
 [Awad et al., 2004]
 • Up-regulation of pro-inflammatory cytokines markers
 • IL-1β
 • IL-6
 • IL-8
 • TNF-α
 [Grenier and Applegate, 2013]
Immune System Implications

- Mycotoxins are **NOT** able to induce an immune response
- Mycotoxins interfere with signaling pathways
 - MAPKs
 - Cell growth
 - Apoptosis
 - Immune responses

- Impaired ability to mount an immune response
 - More susceptible to infection

Murugesan et al., 2015
Susceptibility to Disease

• Mycotoxins can:
 • Affect activated and proliferating cells
 • Damage epithelial tissue
 • Increase intestinal permeability

Weakens the Immune System!
Susceptibility to Disease: Necrotic Enteritis in Broilers

• Control Diet vs Diet with 5 mg DON/kg of feed
 • Birds fed 5 mg DON/kg:
 • More prone to developing necrotic enteritis lesions
 • Predisposing factor for intestinal mucosa damage
 • Leakage of nutrients into the intestinal lumen
 • Growth substrate for proliferation of *C. perfringens*

Antonissen et al., 2014
Susceptibility to Disease: Coccidiosis in Broilers

• 1/2 the birds were given 25x-recommended dose cocci vaccine

• Control vs 1.5 mg DON/kg vs 20 mg FUM/kg vs DON+FUM
 • Mycotoxin fed birds:
 • Increased frequency of intestinal lesions
 • Increased number of oocysts in:
 • Jejunal mucosa
 • Feces
 • Upregulation of cytokines

• Subclinical doses of DON and FUM:
 • Unchallenged birds
 • Little effects
 • Challenged birds:
 • Cause metabolic and immunologic disturbances
 • Amplified the severity of coccidiosis
Susceptibility to Disease: Coccidiostat Impairment

• T-2 toxin exceeded 0.5 mg/kg in feed
 • Impaired effectiveness of coccidiostat
 • Increased occurrence of clinical coccidiosis
Mycotoxin presence in dog food

- 48 commercial dog food products
 - 24 standard products
 - 24 premium products
 - Based on price per unit

- 47/48 samples contained quantified amounts of at least 2 mycotoxins
 - Level of detection 1-2 μg/kg
 - Level of quantification 5 μg/kg

- 52% contained 3 mycotoxins
 - 15/24 of standard products
 - 10/24 of premium products

- 25% contained 4 mycotoxins
 - 6/24 standard products
 - 6/24 premium products

Gazzotti et al., 2015
Mycotoxin presence in dog food

• Quality and safety concerns
 • Pet health
 • Human health?

• Economic and emotional implications
 • Pet owners

• Symptoms of mycotoxicosis in dogs
 • When supplied a dose equaling 3 mg/kg
 • Loss of appetite
 • Vomiting
 • Still largely unknown

Gazzotti et al., 2015
FDA Maximum Levels for Equine: Aflatoxins

• Maximum level = 20 ppb
• Target organ → Liver
• Symptoms
 • Loss of appetite
 • Depression
 • Fever
 • Cough

• Necropsy findings
 • Yellow-brown liver with centrilobular necrosis
 • Tracheal exudates
 • Brown urine

Limited published information on aflatoxin exposure in horses
FDA Maximum Levels for Equine: Fumonisins

• Maximum level = 5 ppm
 • Corn-screenings should not be fed

• Equine leukoencephalomalacia
 • Moldy corn poisoning

• Symptoms may develop in 7-35 days
 • Disorientation → Blind staggers
 • Aimless walking
 • Deranged behavior
 • Colic
 • Death
 • Confirmation requires pathological examination of the brain

Grain not to exceed 20% of total diet

www.oisc.purdue.edu/feed/mycotoxins.html; www.ngfa.org
FDA Maximum Levels for Swine: Aflatoxins

• Marked age-related differences
 • Most susceptible
 • Nursing piglets
 • Weanlings
 • Maximum level = 20 ppb
 • Lactating dams may pass toxic metabolites in milk to piglets
 • Maximum level
 • Breeding swine = 100 ppb
 • Finishing swine = 200 ppb

• Symptoms
 • Reduced feed intake, feed efficiency, and daily gain
 • Secondary disease challenges
 • Acute aflatoxicosis → Rare
 • Necrotic and swollen liver
 • Chronic aflatoxicosis
 • Liver is fibrotic and small
 • Ascites
FDA Maximum Levels for Swine: Fumonisins

- Maximum level = 20 ppm
 - No more than 50% of the diet
- Porcine Pulmonary Edema (PPE)
 - Fatal disease from 1989 corn crop
 - Contaminated corn-screenings
- Symptoms
 - Hepatic lesions
 - Apoptosis
 - Necrosis
 - Hepatocyte proliferation
 - Acute left-sided heart failure

Haschek et al., 2001; www.ngfa.org
Zearalenone Toxicity in Swine

- Chemical structure is similar to estrogen
 - Estrogenic effects
 - Affects all age groups

Clinical Effects of Zearalenone Toxicosis

Chi, Broomhead, and Chen, 2011
FDA Maximum Levels for Dairy Cattle: Aflatoxin

• Maximum level = 20 ppb
• Young are more susceptible than mature animals

• Symptoms
 • Reduced feed intake
 • Reduced performance
 • Reduced milk production
 • Impaired reproductive efficiency
 • Abnormal estrus cycle
 • Abortions

• Aflatoxins will show up in milk before these symptoms present themselves
FDA Maximum Levels for Dairy Cattle: Fumonisins

- Maximum level = 30 ppm
- Rumen microbes do not tend to metabolize Fumonisins
 - Dairy cattle seem to be tolerant
- Some reports of reduced milk production at 100 ppm
- The literature is not in agreement on milk contamination
 - Some reported contaminations
 - Not extensively studied
 - May be an area of interest with LC-MS

Grain not to exceed 50% of total diet

www.ngfa.org; Becker-Algeri et al., 2016; Diaz et al., 2000
FDA Maximum Levels for Beef Cattle: Aflatoxin

- Immature animals
 - Maximum level = 20 ppb
- Breeding cattle
 - Maximum level = 100 ppb
- Finishing cattle
 - Maximum level = 300 ppb
- Symptoms
 - Hepatic damage → lesions
 - Rectal prolapse
 - Decreased performance
 - Recovery after exposure → very slow
 - Death

Metabolic and physiological responses are similar to nonruminants

www.ngfa.org; Osweiler and Trampel, 1985
FDA Maximum Levels for Beef Cattle: Fumonisins

• Maximum level = 60 ppm

• Beef cattle appear to be less susceptible than other species when consuming Fumonisins naturally present in grains

• Symptoms
 • Some liver lesions
 • Reduced feed palatability/intake
 • At high contamination rates
 • Immunosuppression

Grain not to exceed 50% of total diet

www.ngfa.org; Osweiler et al., 1993
FDA Maximum Levels for Poultry: Aflatoxins

- Immature poultry
 - Maximum level = 20 ppb
- Mature poultry
 - Maximum level = 100 ppb
- Avian species are variable in sensitivity to chronic aflatoxicosis
 - Most sensitive
 - Turkey poults and Ducklings
 - Dietary levels at 0.25 ppm reduced growth
 - A little less sensitive
 - Broilers
 - Dietary levels of 1.5 ppm reduced growth
 - Not very sensitive
 - Japanese Quail
 - Dietary levels of 4 ppm reduced growth
Symptoms of aflatoxicosis in poultry

- Reduced growth rate
- Decreased resistance to infection
- Impaired blood coagulation
 - Increased susceptibility to carcass bruising
- Hemorrhage
- Hepatic necrosis
- Death
FDA Maximum Levels for Poultry: Fumonisins

• Hens laying eggs for human consumption
 • Maximum level = 30 ppm
• Poultry raised for slaughter
 • Maximum level = 100 ppm

• Symptoms
 • Decreased performance
 • Immune suppression
 • Rickets
 • Reduced egg quality parameters

• Necropsy results
 • Enlarged proventriculus
 • Gizzard erosion
 • Increased weight of liver, kidneys, and heart

Grain not to exceed 50% of total diet
FDA’s Advisory Levels for DON

<table>
<thead>
<tr>
<th>Intended Use</th>
<th>Grain or Grain By-products</th>
<th>DON levels in grains/by-products (Complete Diet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swine</td>
<td>Grain and grain by-products not to exceed 20% of the diet</td>
<td>5 ppm (1 ppm)</td>
</tr>
<tr>
<td>Chickens</td>
<td>Grain and grain by-products not to exceed 50% of the diet</td>
<td>10 ppm (5 ppm)</td>
</tr>
<tr>
<td>Beef Cattle (4months +)</td>
<td>Grain and grain by-products</td>
<td>10 ppm</td>
</tr>
<tr>
<td>Dairy Cattle (4 months +)</td>
<td>Grain and grain by-products not to exceed 50% of the diet</td>
<td>10 ppm (5 ppm)</td>
</tr>
<tr>
<td>All other animals</td>
<td>Grain and grain by-products not to exceed 40% of the diet</td>
<td>5 ppm (2 ppm)</td>
</tr>
</tbody>
</table>
Biological Effects of Aflatoxin

• Interaction with protein synthesis
 • Inhibiting nucleic acid synthesis
 • Interference with transcription
 • Inhibiting protein synthesis
 • Interference with translation
Toxic Responses

• Alteration of basic metabolic processes

• Interference with:
 • Lipid metabolism
 • Accumulation of lipid in the liver
 • Impaired transport of lipids out of the liver
 • Carbohydrate metabolism
 • Decreased hepatic glycogen
 • Increased serum glucose
 • Mitochondrial respiration
Biological Effects: Enzyme Inhibition in Oxidative Phosphorylation

Godfrey et al., 2013
Biological Effects: ETC Inhibition in Oxidative Phosphorylation

Godfrey et al., 2013
Deactivating Mycotoxins

• Large variety of mycotoxin structures
 • No single method for mycotoxin deactivation

• Difficult to predict which mycotoxins will be present in complete feed
 • Complex diets
 • Various sources of ingredients
Deactivating Mycotoxins

• Binders, absorbents, enterosorbents
 • Organic
 • Microbial
 • Inorganic
 • Clay mineral products

• Bio-protection
 • Algae/plant materials
 • Protects vulnerable organs
 • Boosts immune system

• Biotransformation
 • Microorganisms or purified enzymes
 • Catabolize entire mycotoxin
 • Transform mycotoxin
 • Cleave mycotoxin
Can mold/mycotoxin prevalence be affected by on-farm management strategies?
As we may expect

Average Bird Weight

FCR

Producer Ranking

Above Avg Avg Below Avg

Above Avg Avg Below Avg

[Graphs showing average bird weight and FCR for producer ranking with different categories: Above Avg, Avg, Below Avg, with numerical values and trend lines indicating expected relationships.]
Maybe a little more surprising
Can mold/mycotoxin prevalence be affected by on-farm management strategies?

YES!

Opportunity to identify low performing growers for training efforts
2017 world compound feed production by species

- Poultry
- Swine
- Ruminant
- Aqua

Penn State College of Agricultural Sciences

WATTAgNet.com
Total Diet Composition For Top Livestock and Poultry in 2016

Source: www.afia.org/feedindustrystats
Figure 1. Global map of mycotoxin occurrence and risk in different regions.

Legend:
- Moderate risk: 0-25% of samples above risk threshold
- High risk: 26-50% of samples above risk threshold
- Severe risk: 51-75% of samples above risk threshold
- Extreme risk: 76-100% of samples above risk threshold
- No samples tested
Mycotoxin Report: Annual Report Produced by Biomin

North America

<table>
<thead>
<tr>
<th>Total samples: 1124</th>
<th>Afla</th>
<th>ZEN</th>
<th>DON</th>
<th>T-2</th>
<th>FUM</th>
<th>OTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of samples tested</td>
<td>1049</td>
<td>1116</td>
<td>1087</td>
<td>1086</td>
<td>1093</td>
<td>1117</td>
</tr>
<tr>
<td>% Contaminated samples</td>
<td>8%</td>
<td>26%</td>
<td>65%</td>
<td>3%</td>
<td>39%</td>
<td>2%</td>
</tr>
<tr>
<td>% Above risk threshold</td>
<td>7%</td>
<td>23%</td>
<td>56%</td>
<td>3%</td>
<td>24%</td>
<td>0%</td>
</tr>
<tr>
<td>Average of positives (ppb)</td>
<td>11</td>
<td>410</td>
<td>660</td>
<td>526</td>
<td>2507</td>
<td>20</td>
</tr>
<tr>
<td>Median of positives (ppb)</td>
<td>4</td>
<td>105</td>
<td>349</td>
<td>598</td>
<td>702</td>
<td>2</td>
</tr>
<tr>
<td>Maximum (ppb)</td>
<td>223</td>
<td>10790</td>
<td>11600</td>
<td>1143</td>
<td>50734</td>
<td>317</td>
</tr>
</tbody>
</table>
Conclusions: Back to the basics

1. Mycotoxicosis should be considered as possible primary factor:
 a. Production losses
 b. Increased incidence of disease

2. Documented symptoms can be a guide in the field

3. Guide to probable cause
 a. Specific damage to target tissues

4. Post-mortem examinations may only indicate
 a. Gut irritation
 b. Edema
 c. Tissue inflammation

5. Feed analysis should be performed
 a. Accurate sampling is the challenge

Schiefer, 1990
Thank You!

John Boney
jxb2002@psu.edu
814-863-8934
Feed Industry Update

Gary Huddleston – Director, Feed Manufacturing and Regulatory Affairs
American Feed Industry Association

AFIA members include:
- Ingredient Suppliers
- Feed Manufacturers
- Associations
- Industry Support
- Pet Food Manufacturers
- Educational Institutions
- Pharmaceuticals
- Equipment Manufacturers
- Media

Represents 75% of the feed in the U.S. and 70% of the non-grain ingredients

Over 680 members

More than 100 years representing the industry

Based in Arlington, VA
Tons of Livestock Feed Manufactured in the US in 2016

Total Tons - 236.3 Million

- Cattle on Feed – 74.7 Million
- Broilers – 56.3 Million
- Hogs – 46.3 Million
- Dairy Cows – 23.8 Million
- Layers – 16.4 Million
- Turkeys – 9.9 Million
- Horses – 8.0 Million
- Aquaculture – 708,000
- Sheep – 157,000
Top 5 States in Animal Food Consumption
(in 1,000 tons in 2016)

- NEBRASKA: 15,446.2
- MINNESOTA: 11,331.1
- TEXAS: 17,316.4
- IOWA: 21,063.1
- NORTH CAROLINA: 12,558.7
Ingredient Usage Breakdown

Estimated 2016 U.S. Total Diet Composition

- Corn, 50.3%
- Soybean Meal, 12.7%
- DDGS, 12.6%
- Wet Distillers Grains, 8.5%
- Bakery Meal, 4.2%
- Corn Gluten Feed, 1.7%
- Cottonseed Meal, 1.7%
- Wheat Midds, 1.6%
- Grain Sorghum, 1.5%
- Soybean Hulls, 1.2%
- Oats, 1.0%
- Other, 3.1%
Feed Mill Distribution in the US

U.S. Feed Mill Distribution
FDA Licensed and FDA Non-Licensed Feed Mills

Feed Mills
The Production of Animal Food Contributes Billions to the Economy

<table>
<thead>
<tr>
<th></th>
<th>Animal Feed</th>
<th>Pet Food</th>
<th>TOTAL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Sales</td>
<td>$170 B</td>
<td>$127 B</td>
<td>$297 B</td>
</tr>
<tr>
<td>Including Value-Add</td>
<td>$58 B</td>
<td>$44 B</td>
<td>($102 B)</td>
</tr>
<tr>
<td>(i.e., sales minus the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cost of inputs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxes (local, state &</td>
<td>$13 B</td>
<td>$9 B</td>
<td>$22 B</td>
</tr>
<tr>
<td>national)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Based on 2016 data, in billions of dollars
Animal Food Manufacturing Contributes to U.S. Labor Force

<table>
<thead>
<tr>
<th></th>
<th>Animal Feed</th>
<th>Pet Food</th>
<th>TOTAL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs (including full & part-time)</td>
<td>545,000+</td>
<td>398,000+</td>
<td>944,000+</td>
</tr>
<tr>
<td>Paid Wages</td>
<td>$33 B</td>
<td>$23 B</td>
<td>$56 B</td>
</tr>
</tbody>
</table>

*Based on 2016 data, wages listed in billions of dollars
Animal Food Industry Supports Trade

- $13.1\ B = \text{total U.S. animal food exports, including:}$
 - $11.6\ B = \text{feed \& feed ingredients}$
 - $1.5\ B = \text{pet food products}$

- Supports U.S. agriculture’s $20B+ \text{ trade surplus}$
With over 9.6 billion food-producing animals & 144 million dogs & cats to feed annually, the demand for animal food is strong.... and growing!
But Many Factors Impact Continued Growth in Animal Food Sector

- Overly burdensome food safety regulations
- Trade policies at the national level
- Ingredient approvals
- Consumer transparency
What’s on everyone’s mind when it comes to FDA?

FSMA!
FSMA Snap Shot

Signed into law January 4, 2011

- The current food safety system has opportunity for improvement.
 - 1 in 6 Americans (48 million) sickened, 128,000 hospitalized, 3,000 die each year from foodborne diseases (CDC, 2011)

- Identified by FDA as the most sweeping reform of food safety laws in more than 70 years.
 - GOAL: Aims to ensure the U.S. food supply is safe by shifting the focus of federal regulators from responding to contamination to preventing it.
What Does FSMA Require?

• **Facilities that only hold animal food must (includes retail):**
 - Comply with CGMP requirements
 - Train Qualified Individuals

• **Facilities that manufacture, process or pack must also:**
 - Designate and train a Preventive Controls Qualified Individual (FSPCA Animal Food Course best method)
 - Conduct a Hazard Analysis
 - Develop a written Food Safety Plan to address the hazards identified
What is a FSMA Hazard Analysis?

• Varies by facility
• Consider ingredients and processes
• Identify hazards to animals as well as humans
• Most difficult part of FSMA compliance
Food Safety Plan

Required Documentation

All of this information should be assembled into a written Food Safety Plan

- The format is flexible
- Describes the facility’s risk-based approach to managing the identified hazards
Complete Framework of FSMA for Animal Food

- **Preventive Controls for Animal Food (Part 507)**
 - CGMPs
 - Hazard Analysis
 - Food Safety Plan
- **Foreign Supplier Verification Program (FSVP) for Importers**
- **Sanitary Transportation of Human and Animal Food**
- **Accredited Third-Party Certification (for certifying importers – not very applicable)**
Primary Types of FSMA Inspections

- CGMP
 - Subpart B

- HA/PC
 - Subparts C&E

- Sanitary Transportation
- FSVP
FSMA Compliance – Apr 2019
Everyone except very small businesses (<$2.5M)

- Qualified Individual Training should be in place
- Facilities should have a designated PCQI in place
- Compliance to CGMPs required
- Hazard Analysis and Food Safety Plans are required
- Sanitary Transportation Rule compliance required
- FSVP Rule compliance required
- HA/PC inspections in full swing for large businesses
- Small business inspections (<500 FTE) will start in the fall
- Will be combined with CGMPs, med feed, BSE, etc.
FDA CGMP Inspections & FOIA Data

• 622 inspections performed and completed during calendar year 2018
• Inspections held in 47 states, 1 US Territory (PR) & 4 foreign countries (CA, India, Indonesia, MX)
• 58% feed/integrators; 11% pet food; 24% ingredients/renderers; 6% warehouses; 1% food & beverage or other/unknown
• 28 Form 483s were issued, 14 VAIs were issued, 8 were not classified; 5 NAI and 1 OAI
• AFIA has copies of most 483s issued
• Facility type and geographic diversity consistent
CGMP Inspection Activity Calendar 2018

• What we’ve learned so far:
 • They usually do a thorough walk-thru of the plant
 • Pest control seems to be a major focus
 • Unlabeled containers and trash cans is a frequent observation
 • They are asking to see QI training documentation
 • They are asking about the PCQI and training
 • They have visited a few retail commodity blenders
 • Frequently, they are asking to see records for which they are not entitled to see

• The best preparation for an inspection is familiarity with the rule
FDA VFD Inspections FOIA

- 269 inspections performed and completed during calendar 2018
- Inspections held in 30 states, with more than 52% in IA, KS, NE and MO
- 85% Distributors (Retailers), 11% Farms and 4% at Veterinary facilities
- 21 Form 483s were issued, 8 VAls were issued, 2 were not classified; 11 were NAI
- Facility type and geographic diversity questionable
FDA HA/PC Inspections FOIA

- 7 inspections performed and completed during calendar 2018
- Inspections held in 4 states, KS (3), KY (2), MS and NE
- 5 Feed, 1 Integrator and 1 Pet Food facility
- 6 Form 483s were issued, 1 VAI, balance unclassified
- **Evidence suggests these facilities may have had a recent Animal Food Safety incident.**
FDA HA/PC Inspections Learnings

• Multiple day inspections (3-5 average)
• Documents thoroughly reviewed:
 – Food Safety Plan
 – Hazard analysis
 – Supplier approval program
 – Training documentation (PCQI and QI)
 – Others related to other parts of the inspections (medicated feed, BSE, CGMP)
• Federal and State investigators
• Seem to be in “educate” mode…but issue 483
FDA HA/PC Inspection Plan

• Large firms – compliance as of Sept. 2017
 – Delayed inspections until Oct. 2018
 • New FY and inspections should be occurring

• Small firms – compliance Sept. 2018
 – Inspections will start fall of 2019

• May do CGMP and HA/PC inspections at same time
 – May add in BSE, medicated feed inspections
 – Sanitary transportation readiness questions
FDA FY 2019 Inspection Plan

• FY is Oct 1, 2018 through Sep 30, 2019
• Complete 250 domestic and 15 foreign CGMP inspections (Large and Small Facilities)
 – As of mid-Mar: 99 completed (58-FDA; 41-States)
• Complete 150 domestic and 10 foreign HA/PC inspections (Large Facilities)
 – As of mid-Mar: 14 completed (11-FDA; 3-States)
• Current contracts in place for HA/PC inspections with CA, IA, KS, MI, MN, MO, NC, NE, TN, and TX
#235 Current Good Manufacturing Practice Requirements for Food for Animals

- No real surprises or enlightening interpretations
- Final document after comment period not bad (51 pages)
- Almost all of AFIA’s suggestions were accepted
- Good explanation about the different types of facilities
- Does a good job highlighting flexibility of the rule
- Best part of the document is Appendix B – Self-Assessment Tool (Inspection Checklist)
#245 Hazard Analysis and Risk-Based Preventive Controls for Food for Animals

- This document is still in the draft stage (169 pages)
- AFIA submitted 36 pages of comments (lots of issues!)
- A lot of the language was devoted to hazards not relevant to most of the industry (pet vs livestock)
- Not enough qualifying language on the intended use of the animal food
- The list of hazards in Appendix E is concerning
Applicable FDA FSMA Guidance for Industry

#246 Hazard Analysis and Risk-Based Preventive Controls for Food for Animals: Supply-Chain Program

• This document is still in the draft stage (53 pages)
• It addresses Subpart E (not very relevant to animal food)
• Not nearly as many issues as GD #245
• AFIA submitted 8 pages of comments
• It’s unlikely feed mills will have a supply-chain-applied control
Meetings and Calls with FDA

Meetings with Jenny Murphy & Staff
- Meetings have mostly been about GFI #245
- We don’t feel they will adopt all of our comments
- We walked away with concerns about PC/HA inspections
- Concerns about possible required PCs

Call with Glenn Bass and ORA Staff
- Left us with same general feeling about inspections
- They expect the facility to be a completely open book
- We did petition them to consider giving advance notice
Organic Feed Update

Organic Trade Association (OTA) lawsuit against USDA proceeding

• USDA withdrew the Organic Livestock Rule
• OTA claims that has caused harm to the organic sector
• USDA claims that the Organic Food & Production Act (OFPA) does not give the National Organic Program the authority to regulate animal welfare
• The U.S. District Court for the District of Columbia agreed with the OTA and decided to let the lawsuit proceed
OSHA Update

Electronic Reporting Rule

• Form 300A data must be submitted through the agency’s Injury Tracking Application (ITA) on their website by July
• OSHA announced the initiation of their Site-Specific Targeting 2016 (SST-16) Program (will use submitted data)

Workplace Incentive Programs (memorandum)

• You must make sure your program does not discourage the reporting of workplace injuries and illnesses by employees
• OSHA also clarified that most instances of workplace drug testing are permissible
Federal Motor Carrier Safety Administration

Hours of Service Rules

• FMCSA released a guidance document in May that provided more clarity on the 150-air mile radius exemption for agricultural commodities (Feed not included)
• Livestock Feed is considered in the definition of “farm supplies” and is exempt from HOS rules inside the 150-air mile radius under 40 CFR Part 395
• The ELD requirement was permanently suspended for haulers of livestock in late 2018
Federal Motor Carrier Safety Administration

Proposed HOS rule changes (released in Aug 2018)

- Expanding the 100 air-mile "short-haul" exemption from 12 to 14 hours
- Extending the current on-duty hours limitation in adverse driving conditions
- Revising the current mandatory 30-minute break
- Reinstating the option for splitting up the off-duty rest break for drivers operating trucks that are equipped with a sleeper-berth compartment
EPA Update

• CERCLA & EPCRA Reporting Requirements – Manure reporting exemption for farms reinstated
• Tier II Reporting – Combustible Dust
 – EPA revised the report to better align EPCRA with the revised OSHA 2012 Hazard Communication Standard (HCS 2012)
 – AFIA and NGFA had discussions with EPA on the issue
 – AFIA put out guidance Jan 15
 – Guidance is to report combustible dust, but below reporting threshold (check the box)
THANK YOU

AFIA’S 4 PROMISES

VOICE

REPRESENTATION

EXPERTISE

ENGAGEMENT

AFIA

afia.org

2101 Wilson Blvd. Suite 810 Arlington, VA 22201 703.524.0810