Production of a biologically active recombinant teleostean growth hormone in E. coli cells

Clara M. Chenga,b, C.M. Lina, M. Shamblotta,b, L.I. Gonzalez-Villasenorc, D.A. Powersd, C. Woodse, T.T. Chena,b,*

aCenter of Marine Biotechnology, University of Maryland Biotechnology Institute, 600 E. Lombard Street, Baltimore, MD 21202, USA
bDepartment of Biological Sciences, University of Maryland at Baltimore County, Baltimore, MD 21228, USA
cDepartment of Biology, The Johns Hopkins University, 34th and N. Charles Streets, Baltimore, MD 21218, USA
dHopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
eAgriculture Experimental Station, University of Maryland System, College Park, MD, USA

Received 30 September 1994; accepted 5 December 1994

Abstract

We have isolated and characterized several recombinant lambda phage clones carrying growth hormone (GH) cDNA of striped bass (\textit{Morone saxatilis}). Nucleotide sequence and the predicted amino acid sequence of sbGH was determined from a recombinant clone carrying the longest cDNA insert. The sbGH cDNA encodes a pre-hormone of 204 amino acid residues. Comparison of the predicted amino acid sequence of sbGH with those of other vertebrates revealed different degrees of sequence identity: approximately 98\% with European sea bass; 90\% with bluefin tuna; bonito and red seabream; 71\% with winter flounder; 64\% with salmonids; 55\% with carp; and 38\% with human. Expression of the mature sbGH cDNA (without the signal peptide sequence) in \textit{E. coli} cells under regulation of the lambda phage PL promoter produced a polypeptide of 20 kDa. Following renaturation, this recombinant hormone was shown to be biologically active in a radioreceptor competition binding assay and in the induction of hepatic insulin-like growth factor I (IGF-I) mRNA synthesis in vivo.

Keywords: Striped bass; Growth hormone; Expression in \textit{E. coli}; Renaturation; Competitive receptor binding assay; IGF-I induction